Input/Output (io)
read_commandline(cmd, engine='pandas', **kwargs)
Read a CSV file based on a command-line command.
For example, you may wish to run the following command on sep-quarter.csv
before reading it into a pandas DataFrame:
cat sep-quarter.csv | grep .SEA1AA
In this case, you can use the following Python code to load the dataframe:
import janitor as jn
df = jn.read_commandline("cat data.csv | grep .SEA1AA")
This function assumes that your command line command will return
an output that is parsable using the relevant engine and StringIO.
This function defaults to using pd.read_csv
underneath the hood.
Keyword arguments are passed through as-is.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cmd
|
str
|
Shell command to preprocess a file on disk. |
required |
engine
|
str
|
DataFrame engine to process the output of the shell command. Currently supports both pandas and polars. |
'pandas'
|
**kwargs
|
Any
|
Keyword arguments that are passed through to the engine's csv reader. |
{}
|
Returns:
Type | Description |
---|---|
Mapping
|
A DataFrame parsed from the stdout of the underlying shell. |
Source code in janitor/io.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
read_csvs(files_path, separate_df=False, **kwargs)
Read multiple CSV files and return a dictionary of DataFrames, or one concatenated DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
files_path
|
Union[str, Iterable[str]]
|
The filepath pattern matching the CSV files.
Accepts regular expressions, with or without |
required |
separate_df
|
bool
|
If |
False
|
**kwargs
|
Any
|
Keyword arguments to pass into the
original pandas |
{}
|
Raises:
Type | Description |
---|---|
JanitorError
|
If |
JanitorError
|
If length of |
ValueError
|
If no CSV files exist in |
ValueError
|
If columns in input CSV files do not match. |
Returns:
Type | Description |
---|---|
Union[DataFrame, dict]
|
DataFrame of concatenated DataFrames or dictionary of DataFrames. |
Source code in janitor/io.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
xlsx_cells(path, sheetnames=None, start_point=None, end_point=None, read_only=True, include_blank_cells=True, fill=False, font=False, alignment=False, border=False, protection=False, comment=False, engine='pandas', **kwargs)
Imports data from spreadsheet without coercing it into a rectangle.
Each cell is represented by a row in a dataframe, and includes the
cell's coordinates, the value, row and column position.
The cell formatting (fill, font, border, etc) can also be accessed;
usually this is returned as a dictionary in the cell, and the specific
cell format attribute can be accessed using pd.Series.str.get
or pl.struct.field
if it is a polars DataFrame.
Inspiration for this comes from R's tidyxl package.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from janitor import xlsx_cells
>>> pd.set_option("display.max_columns", None)
>>> pd.set_option("display.expand_frame_repr", False)
>>> pd.set_option("max_colwidth", None)
>>> filename = "../pyjanitor/tests/test_data/worked-examples.xlsx"
Each cell is returned as a row:
>>> xlsx_cells(filename, sheetnames="highlights")
value internal_value coordinate row column data_type is_date number_format
0 Age Age A1 1 1 s False General
1 Height Height B1 1 2 s False General
2 1 1 A2 2 1 n False General
3 2 2 B2 2 2 n False General
4 3 3 A3 3 1 n False General
5 4 4 B3 3 2 n False General
6 5 5 A4 4 1 n False General
7 6 6 B4 4 2 n False General
Access cell formatting such as fill:
>>> out=xlsx_cells(filename, sheetnames="highlights", fill=True).select("value", "fill", axis='columns')
>>> out
value fill
0 Age {'patternType': None, 'fgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}}
1 Height {'patternType': None, 'fgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}}
2 1 {'patternType': None, 'fgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}}
3 2 {'patternType': None, 'fgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}}
4 3 {'patternType': 'solid', 'fgColor': {'rgb': 'FFFFFF00', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': 'FFFFFF00', 'type': 'rgb', 'tint': 0.0}}
5 4 {'patternType': 'solid', 'fgColor': {'rgb': 'FFFFFF00', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': 'FFFFFF00', 'type': 'rgb', 'tint': 0.0}}
6 5 {'patternType': None, 'fgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}}
7 6 {'patternType': None, 'fgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}, 'bgColor': {'rgb': '00000000', 'type': 'rgb', 'tint': 0.0}}
Specific cell attributes can be accessed by using Pandas' series.str.get
:
>>> out.fill.str.get("fgColor").str.get("rgb")
0 00000000
1 00000000
2 00000000
3 00000000
4 FFFFFF00
5 FFFFFF00
6 00000000
7 00000000
Name: fill, dtype: object
Access cell formatting in a polars DataFrame:
>>> out = xlsx_cells(filename, sheetnames="highlights", engine='polars', fill=True).get_column('fill')
>>> out
shape: (8,)
Series: 'fill' [struct[3]]
[
{null,{"00000000","rgb",0.0},{"00000000","rgb",0.0}}
{null,{"00000000","rgb",0.0},{"00000000","rgb",0.0}}
{null,{"00000000","rgb",0.0},{"00000000","rgb",0.0}}
{null,{"00000000","rgb",0.0},{"00000000","rgb",0.0}}
{"solid",{"FFFFFF00","rgb",0.0},{"FFFFFF00","rgb",0.0}}
{"solid",{"FFFFFF00","rgb",0.0},{"FFFFFF00","rgb",0.0}}
{null,{"00000000","rgb",0.0},{"00000000","rgb",0.0}}
{null,{"00000000","rgb",0.0},{"00000000","rgb",0.0}}
]
Specific cell attributes can be acessed via Polars' struct:
>>> out.struct.field('fgColor').struct.field('rgb')
shape: (8,)
Series: 'rgb' [str]
[
"00000000"
"00000000"
"00000000"
"00000000"
"FFFFFF00"
"FFFFFF00"
"00000000"
"00000000"
]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Union[str, Workbook]
|
Path to the Excel File. It can also be an openpyxl Workbook. |
required |
sheetnames
|
Union[str, list, tuple]
|
Names of the sheets from which the cells are to be extracted.
If |
None
|
start_point
|
Union[str, int]
|
Start coordinates of the Excel sheet. This is useful
if the user is only interested in a subsection of the sheet.
If |
None
|
end_point
|
Union[str, int]
|
End coordinates of the Excel sheet. This is useful
if the user is only interested in a subsection of the sheet.
If |
None
|
read_only
|
bool
|
Determines if the entire file is loaded in memory,
or streamed. For memory efficiency, read_only should be set to |
True
|
include_blank_cells
|
bool
|
Determines if cells without a value should be included. |
True
|
fill
|
bool
|
If |
False
|
font
|
bool
|
If |
False
|
alignment
|
bool
|
If |
False
|
border
|
bool
|
If |
False
|
protection
|
bool
|
If |
False
|
comment
|
bool
|
If |
False
|
engine
|
str
|
DataFrame engine. Should be either pandas or polars. |
'pandas'
|
**kwargs
|
Any
|
Any other attributes of the cell, that can be accessed from openpyxl. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If kwargs is provided, and one of the keys is a default column. |
AttributeError
|
If kwargs is provided and any of the keys is not a openpyxl cell attribute. |
Returns:
Type | Description |
---|---|
Mapping
|
A DataFrame, or a dictionary of DataFrames. |
Source code in janitor/io.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
|
xlsx_table(path, sheetname=None, table=None, engine='pandas')
Returns a DataFrame of values in a table in the Excel file.
This applies to an Excel file, where the data range is explicitly specified as a Microsoft Excel table.
If there is a single table in the sheet, or a string is provided
as an argument to the table
parameter, a DataFrame is returned;
if there is more than one table in the sheet,
and the table
argument is None
, or a list/tuple of names,
a dictionary of DataFrames is returned, where the keys of the dictionary
are the table names.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from janitor import xlsx_table
>>> filename="../pyjanitor/tests/test_data/016-MSPTDA-Excel.xlsx"
Single table:
>>> xlsx_table(filename, table='dCategory')
CategoryID Category
0 1 Beginner
1 2 Advanced
2 3 Freestyle
3 4 Competition
4 5 Long Distance
>>> xlsx_table(filename, table='dCategory', engine='polars')
shape: (5, 2)
┌────────────┬───────────────┐
│ CategoryID ┆ Category │
│ --- ┆ --- │
│ i64 ┆ str │
╞════════════╪═══════════════╡
│ 1 ┆ Beginner │
│ 2 ┆ Advanced │
│ 3 ┆ Freestyle │
│ 4 ┆ Competition │
│ 5 ┆ Long Distance │
└────────────┴───────────────┘
Multiple tables:
>>> out=xlsx_table(filename, table=["dCategory", "dSalesReps"])
>>> out["dCategory"]
CategoryID Category
0 1 Beginner
1 2 Advanced
2 3 Freestyle
3 4 Competition
4 5 Long Distance
>>> out["dSalesReps"].head(3)
SalesRepID SalesRep Region
0 1 Sioux Radcoolinator NW
1 2 Tyrone Smithe NE
2 3 Chantel Zoya SW
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Union[str, IO, Workbook]
|
Path to the Excel File. It can also be an openpyxl Workbook. |
required |
table
|
Union[str, list, tuple]
|
Name of a table, or list of tables in the sheet. |
None
|
engine
|
str
|
DataFrame engine. Should be either pandas or polars. Defaults to pandas |
'pandas'
|
Raises:
Type | Description |
---|---|
AttributeError
|
If a workbook is provided, and is a ReadOnlyWorksheet. |
ValueError
|
If there are no tables in the sheet. |
KeyError
|
If the provided table does not exist in the sheet. |
Returns:
Type | Description |
---|---|
Mapping
|
A DataFrame, or a dictionary of DataFrames,
if there are multiple arguments for the |
Source code in janitor/io.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|