Timeseries
Time series-specific data cleaning functions.
fill_missing_timestamps(df, frequency, first_time_stamp=None, last_time_stamp=None)
Fills a DataFrame with missing timestamps based on a defined frequency.
If timestamps are missing, this function will re-index the DataFrame. If timestamps are not missing, then the function will return the DataFrame unmodified.
Examples:
Functional usage
>>> import pandas as pd
>>> import janitor.timeseries
>>> df = janitor.timeseries.fill_missing_timestamps(
... df=pd.DataFrame(...),
... frequency="1H",
... )
Method chaining example:
>>> import pandas as pd
>>> import janitor.timeseries
>>> df = (
... pd.DataFrame(...)
... .fill_missing_timestamps(frequency="1H")
... )
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame which needs to be tested for missing timestamps |
required |
frequency
|
str
|
Sampling frequency of the data. Acceptable frequency strings are available here. Check offset aliases under time series in user guide |
required |
first_time_stamp
|
Timestamp
|
Timestamp expected to start from;
defaults to |
None
|
last_time_stamp
|
Timestamp
|
Timestamp expected to end with; defaults to |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame that has a complete set of contiguous datetimes. |
Source code in janitor/timeseries.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
flag_jumps(df, scale='percentage', direction='any', threshold=0.0, strict=False)
Create boolean column(s) that flag whether or not the change between consecutive rows exceeds a provided threshold.
Examples:
Applies specified criteria across all columns of the DataFrame
and appends a flag column for each column in the DataFrame
>>> df = (
... pd.DataFrame(...)
... .flag_jumps(
... scale="absolute",
... direction="any",
... threshold=2
... )
... ) # doctest: +SKIP
Applies specific criteria to certain DataFrame columns,
applies default criteria to columns *not* specifically listed and
appends a flag column for each column in the DataFrame
>>> df = (
... pd.DataFrame(...)
... .flag_jumps(
... scale=dict(col1="absolute", col2="percentage"),
... direction=dict(col1="increasing", col2="any"),
... threshold=dict(col1=1, col2=0.5),
... )
... ) # doctest: +SKIP
Applies specific criteria to certain DataFrame columns,
applies default criteria to columns *not* specifically listed and
appends a flag column for only those columns found in specified
criteria
>>> df = (
... pd.DataFrame(...)
... .flag_jumps(
... scale=dict(col1="absolute"),
... threshold=dict(col2=1),
... strict=True,
... )
... ) # doctest: +SKIP
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame which needs to be flagged for changes between consecutive rows above a certain threshold. |
required |
scale
|
Union[str, Dict[str, str]]
|
Type of scaling approach to use. Acceptable arguments are
|
'percentage'
|
direction
|
Union[str, Dict[str, str]]
|
Type of method used to handle the sign change when comparing consecutive rows. Acceptable arguments are
|
'any'
|
threshold
|
Union[int, float, Dict[str, Union[int, float]]]
|
The value to check if consecutive row comparisons
exceed. Always uses a greater than comparison. Must be |
0.0
|
strict
|
bool
|
Flag to enable/disable appending of a flag column for
each column in the provided DataFrame. If set to |
False
|
Raises:
Type | Description |
---|---|
JanitorError
|
If |
JanitorError
|
If |
JanitorError
|
If |
JanitorError
|
If |
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame that has |
Source code in janitor/timeseries.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
sort_timestamps_monotonically(df, direction='increasing', strict=False)
Sort DataFrame such that index is monotonic.
If timestamps are monotonic, this function will return the DataFrame unmodified. If timestamps are not monotonic, then the function will sort the DataFrame.
Examples:
Functional usage
>>> import pandas as pd
>>> import janitor.timeseries
>>> df = janitor.timeseries.sort_timestamps_monotonically(
... df=pd.DataFrame(...),
... direction="increasing",
... )
Method chaining example:
>>> import pandas as pd
>>> import janitor.timeseries
>>> df = (
... pd.DataFrame(...)
... .sort_timestamps_monotonically(direction="increasing")
... )
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame which needs to be tested for monotonicity. |
required |
direction
|
str
|
Type of monotonicity desired.
Acceptable arguments are |
'increasing'
|
strict
|
bool
|
Flag to enable/disable strict monotonicity.
If set to |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame that has monotonically increasing (or decreasing) timestamps. |
Source code in janitor/timeseries.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|